Skip to content

Materials Science and Engineering Georgia Institute of Technology Materials Science and Engineering

Menu
Close
  • ABOUT
    • CHAIR'S WELCOME
    • WHAT IS MSE?
    • ADVISORY BOARD
    • HISTORY
    • CONTACTS & DIRECTIONS
    • OUTREACH ACTIVITIES
    • STRATEGIC PLAN
    • CAREER OPPORTUNITIES
    • AVAILABLE POSITIONS
  • VALUES
    • DIVERSITY AND INCLUSION
    • CREATING RESISTANCE TO SEXUAL HARASSMENT (CRSH)
  • GRADUATE
    • CURRENT STUDENTS
    • PROSPECTIVE STUDENTS
    • FAQ
    • REQUEST INFO
    • APPLY NOW
    • CERTIFICATES
  • PROSPECTIVE STUDENTS
    • GRADUATE
    • UNDERGRADUATE
  • UNDERGRADUATE
    • ACADEMIC ADVISING
    • CURRICULUM
    • MENTORING PROGRAM
    • MSE MINOR AND CERTIFICATES
    • PROSPECTIVE STUDENTS
    • REQUEST INFO
    • RESEARCH
    • SCHOLARSHIPS
    • STUDENT RESOURCES
    • CHANGE MAJOR
  • PEOPLE
    • ALL
    • FTE FACULTY
    • STAFF
    • ACADEMIC PROFESSIONALS
    • RESEARCH SCIENTISTS/POST DOCS
    • ADJUNCT FACULTY
    • COURTESY APPOINTMENTS
    • EMERITUS FACULTY
    • GRAD STUDENTS
    • ADMINISTRATION
    • STAFF - WHO DOES WHAT
  • GIVING
    • STUDENT SUPPORT
    • SUPPORTING THE MILL
    • SUPPORTING RESEARCH AND FACULTY
    • SUPPORTING THE SCHOOL
    • WHY GIVE NOW
    • WAYS TO GIVE
  • MILL
  • RESEARCH
    • MATERIALS AND CHALLENGES
    • RESEARCH CENTERS
    • INDUSTRY RELATIONS
    • TOPICAL WORKING GROUPS
    • FACULTY RESEARCH OVERVIEW
  • INDUSTRY
  • SAFETY
  • Georgia Tech Home
  • Campus Map
  • Directory
  • Offices
  • Facebook
  • YouTube
Search

Search form

  • You are here:
  • Home

Dr. Franz Himpsel - University of Wisconsin

Event Type: 
MSE Seminar
Event Date: 
Monday, October 28, 2013 - 4:00pm to 5:00pm
Location: 
MARC Auditorium

“Using Soft X-ray Spectroscopy to Design New Types of Solar Cells,”

Abstract:  Solar cells are the ideal solution to the energy problem, converting abundant solar energy directly into electricity, which is fully convertible into all other types of energy. An area of 100×100 square miles is sufficient to satisfy the electricity needs of the US with currently available solar cells. But that would cost about a trillion dollars. This talk illustrates how spectroscopy with soft X-rays can assist the development of new materials and new designs for solar cells with better price/performance ratio. The starting point is the most general layout of a solar cell, which consists of a light absorber sandwiched between an electron donor and an electron acceptor. The relevant energy levels can be measured by a combination of X-ray absorption spectroscopy and photoelectron spectroscopy. Examples will be given, such as the combination of all three components in one molecule (donor-π-acceptor complexes [1],[2]). A future dream experiment will be discussed where the movement of photo-generated carriers through such a complex is followed in real time by pump-probe techniques at the latest generation of X-ray light sources (compare [3] for such an experiment in the UV/vis).

Biography:  Franz received a Diploma in Physics at the University of Munich with a thesis in quantum electrodynamics under F. Bopp. After a summer at CERN he went to Munich for a PhD in condensed matter physics 1976/77 with W. Steinmann. As postdoc he joined D.E. Eastman at IBM Yorktown Heights in 1977 to work on surface science with synchrotron radiation. He became staff member in 1980, manager in 1982, and senior manager in 1985, heading the Surface Physics Department. In 1995 he moved to the Physics Department of the UW Madison as full professor, where he also served as the Scientific Director of the Synchrotron Radiation Center (SRC) from 1997 to 2002.
Scientific Work:
His scientific interests have been in the area of surfaces and nanostructures. Utilizing his experience with synchrotron radiation he devised methods for mapping energy bands of solids and surfaces by angle-resolved photoemission. As complement he developed inverse photoemission with tunable photon energy for the study of unoccupied states. For identifying the bonding configurations at semiconductor surfaces/interfaces he took advantage of surface-sensitive core level spectroscopy with synchrotron radiation. Self-assembled nanostructures at surfaces have been a common thread throughout his career, such as magnetic quantum wells, atomic chains for the study of low-dimensional electrons, and an atomic scale memory for testing the limits of data storage. Most recently, he has ventured into the attachment of bio-molecules to surfaces and the design of new materials for solar cells. He has 470 publications in refereed journals and is among the 100 most-cited physicists.

Host: Faisal Alamgir

ABOUT

  • About
    • Chair's Welcome
    • Strategic Plan
    • What is MSE?
    • Careers
    • History
    • Contacts & Directions
    • Outreach Activities
    • External Advisory Board
    • Events
      • Past Events
    • News
    • Seminars
      • Brumley D Pritchett Lecture Series
      • Industry Executive Seminars
      • Past Seminars
      • Upcoming Seminars

Student Resources

  • Undergraduate Handbook
  • Undergraduate Registration
  • Overload Requests
  • Graduate Handbook
  • Lab Safety Policy
  • Student Mentoring Program

Faculty & Staff Resources

  • Faculty & Staff Directory
  • Administration
  • Institute for Materials
  • Financial Forms

Quick Links

  • College of Engineering
  • COE Ethics Statement
  • Bursar's Office
  • Registrar's Office
  • International Education
  • Financial Aid
  • Student Affairs
  • Tech Lingo
  • Title IX/Sexual Misconduct
Map of Georgia Tech

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332
Phone: 404-894-2000

  • Emergency Information
  • Legal & Privacy Information
  • Accessibility
  • Accountability
  • Accreditation
  • Employment
  • Login
Georgia Tech

© Georgia Institute of Technology