MSE 8803 C: Nanomaterials and

Nanotechnology Spring 2016 Schedule

Course Description:

Introduce the concept of *Nanomaterials and Nanotechnology*. Discuss a large variety of nanomaterials (e.g., organic, inorganic, and organic-inorganic nanohybrid) for use in nanotechnology (optics, electronics, optoelectronics, mechanics, energy and biomedical applications). Describe novel synthesis strategies and methods for various functional nanomaterials.

Instructors: Prof. Zhiqun Lin and Prof. Vladimir Tsukruk

E-mails: Prof. Zhiqun Lin; <u>Zhiqun.lin@mse.gatech.edu</u> (Aug 19-Oct 7) Prof. Vladimir V. Tsukruk; <u>vladimir@mse.gatech.edu</u> (Oct 9-Dec 4)

Class Offered: Tuesdays and Thursdays, 4:35 – 5:55 pm **Venue:** Van Leer C456

Date	Торіс
Aug 19-Sept 30	Lecture 1: Introduction to Nanomaterials and Nanotechnology
	Lecture 2: Quantum Dots and Quantum Rods
	Lecture 3: Rational Design and Implementation of Organic Templates for Inorganic Nanocrystal Growth
	Lecture 4 : Graphene: A Superior Two-Dimensional Nanomaterial in Materials Science and Electronics
	Lecture 5: Ferroelectric Nanomaterials: Fundamentals, Characterization and Applications
	Lecture 6 : Fundamentals and Applications of Piezotronics and Piezo- phototronics
	Lectures 7-8: Nanogenerators for Mechanical Energy Harvesting
	Lecture 9: Solar Cells
	Lecture 10: Semiconductor Nanophotocatalysts: Fundamentals, Mechanisms and Issues
	Lecture 11: Progress and Challenges for Rechargeable Lithium Batteries
Oct 2 and Oct 7	Oral Presentations
Oct 9-Nov 27	Soft and hybrid nanomaterials
	1. Introduction in soft matter
(Oct 9, 16, 21,	2. Diological molecules as nanostructured materials

23, 28, 30, Nov	3. Synthetic macromolecules and organic molecules
4, 6, 11, 13, 18,	4. Combining inorganic structures and soft matter
20, 25)	
	Interfacial and surface phenomena and materials
	5. Electrostatic assembly fundamentals
	6. Microcapsules and core-shell structures
	7. Biological and synthetic membranes
	8. Langmuir-Blodgett monolayers and multilayers
	9. Self-assembled monolayers
	10. Synthetic brushes
	11. Soft lithography
	12. Supehydrophobic and superhydrophilic surfaces
	Soft nanomaterials and selected applications
	13. Responsive soft nanomaterials
	14. Nanoparticles and organic ligands
	15. Bio-assisted assembly of nanoparticles
	16. Nanocomposites: block-copolymers, clay, nanofibers.
	17. Photonic and plasmonic polymer structures
	18. AFM, DPN, and others for guided assembly
	 Selected applications: chemo- and biosensing, nanomedicine, nanotribology
	20. Selected applications: organic and polymeric light emitting
	diodes, organic electronics, flexible electronics.
Dec 2 and 4	Oral Presentations
Dec 9 (Tues.)	Final Exam (2:50-5:40pm)

Note: no class on Tuesday, Oct 14 (<u>Fall 2014 Student Recess from 10/11-10/14</u>), and Thursday, Nov 27 (<u>Official School Holiday from 11/27-11/28</u>)

Teaching Method: In-class lectures; and guest lectures offered by invited speakers (professors, research scientists, and senior graduate students).

Oral Presentation and 2-Page Executive Summary: There will be a 20 min oral presentation, followed by a few minutes for questions, on a specific topic assigned by the instructors. The presentation PPT file should be emailed to the instructor <u>a week prior to</u> <u>the presentation</u> (*note: it is 10% of the grade of Oral Presentation and 2-Page Executive Summary*). In addition, each student needs to submit 2-page written summary (11 font size, single line spacing) on the topic to be presented by emailing to the instructors <u>a</u> <u>week prior to the presentation</u>. The outlook for future research on the topic SHOULD be included in the summary, and approximately 1-page in length. Late written Executive Summary submission will NOT be accepted.

Final grades:

Oral Presentation (Section I) 2-page Summary (Section I) Oral Presentation (Section II) 2-page Summary (Section II) Total 30% (Oct 2 and 7)
20% (due on Sept 30)
30% (Dec 2 and 4)
20% (due on Nov 25)
100%

Grading Scheme:

A: [85-100] B: [75-85) C: [65-75) D: [60-65) F: below 60