MSE 6010 Principles of Functional Materials

School of Materials Science and Engineering Georgia Institute of Technology

Fall 2022

Course Objective	To introduce fundamental principles important to functional materials, including band structures, electronic properties, charge, mass, and energy transport in solids; electrical polarization in a wide range of frequencies; chemical, thermal, electrical, and mechanical interactions in solids; and several electrical characterization techniques.		
Instructor Backup Instructor Lecture Office Phone e-mail Office Hours	Meilin Liu Zheyu Luo W F 3:30 – 4:45 pm LOVE 299 Room 258 Erskine Love Building 404-894-6114 <u>meilin.liu@mse.gatech.edu</u> W F 5:00–6:00 or by appointment		
Teaching assistant Office Hours e-mail	Weining Wang (MoSE 3271) To be determined <u>Weilin.zhang@mse.gatech.edu</u>		
Prerequisite	Graduate standing; basic knowledge of crystal structures of materials		
Homework	Homework will be assigned periodically and collected (but not graded) to assess the level of understanding. Solutions will be posted after homework is collected.		
Exams/Assessment	Exam 1 (Sept -28)	100 points	
	Exam 2 (Nov - 4)	100 points	
	Exam 3 (Dec - 9)	100 points	
	Total	300 points	
Grading Basis	Scale >90% (>270 points) A guaranteed >80% (>240 points) B guaranteed >70% (>210 points) C guaranteed >60% (>180 points) D guaranteed		
	I		

Learning Objectives:	 Upon completion of this course, students will be able to: Understand band structure and electronic properties of materials Become familiar with transport of charge, mass, and energy in materials under various conditions (such as chemical diffusion and electrical or thermal conduction) Understand the mechanisms of electrical polarization (especially interfacial polarization) in material systems Become familiar with several experimental measurements of materials properties, including impedance spectroscopy.
Academic Integrity	Students are reminded of the obligations and expectations associated with the Georgia Tech Academic Honor Code and Student Code of Conduct, available at <u>www.honor.gatech.edu</u> . Academic dishonesty will not be tolerated, including cheating, lying about course matters, plagiarism, or helping others commit a violation of the Honor Code.
Learning Accommodations	For students with documented disabilities, we will make classroom accommodations in accordance with the ADAPTS office (http://www.adapts.gatech.edu). However, this must be arranged in advance.
Electronic Devices	Silence cell phones during class. Calculator (not one on an internet-connected device!) is OK during exam, but you should not need it much.
Course Type Expectation	Hybrid-touch point mode: most classes will be delivered remotely. However, there will be a few in-class activities observing social distancing during planned class sessions. Attendance at those events is strongly encouraged.

References

- 1. Electrons in Solids, An Introductory Survey, 3rd Edition, R. Bube, 1992.
- 2. Physical Ceramics, Y. M. Chiang, D. Birnie, and W. D. Kinggery, Wiley, 1997.
- 3. B.N. Figgis & M.A. Hitchman, Ligand Field Theory and Its Applications; Wiley-VCH, 2000.
- 4. Jean-noel Chazalviel, Coulomb Screening by Mobile Charges Applications to Materials Science, Chemistry, and Biology, Birkhauser, 1999.
- 5. S. O. Kasap, Principles of Electronic Materials & Devices, McGraw-Hill, 3nd Edition, 2007
- 6. Kwan Chi Kao, Dielectric Phenomena in Solids, Elsevier, 2004
- 7. T. Ikeda, Fundamentals of piezoelectricity, Oxford, 1990
- * Lecture notes

Class	Schedule	(MSE	6010)
-------	----------	------	-------

Lecture #	Date	Topics	Ref
		Electronic properties of solids	*,1,2,3
4 weeks	Aug 24 to	Introduction Physical principles	
	Sept 10	Crystal Field Theory Band structure of ceramic materials	
		Band conduction Hopping conduction, Ionic energy bands	
		Temperature Effect Charged Surfaces & Space Charge Region Complex Defects	
	Sept-28	Exam 1: Electronic properties of solids	
		Transport of Mass, Charge, and Energy	*,2,4
4 weeks	Sept 21	Irreversible Thermodynamics	
	to Oct 19	Definition of transport properties/coefficients	
	0001)	Electrical conduction, The 4-probe measurements, Hall effect	
		Chemical diffusion; Nernst-Planck-Poisson system	
		Relaxation of a single kind of species: Diff. and dielectric relaxation	
		Relaxation of two kinds of species - Ambipolar diffusion	
		Mobility of minority carriers	
		Haynes-Shockley Experiment	
		Thermoelectricity	* 5
1 weeks	Oct 21	Thermal conduction, Thermoelectricity, Thermoelectric power	,.
	to	Peltier heat, Thomason heat	
	Oct 26	Thermoelectric cooler	
	Nov-4	Exam 2: Transport and Thermoelectricity	
	1107 1	Exam 2. Fransport and Thermoelectreity	* 6 7
4 1	0.429	Dielectric Properties	*,6,7
4 weeks	to	Electrical polarization in a static field	
	Dec 2	Electrical polarization in an alternating field	
		Polarization mechanisms	
		Resonance spectra, Relaxation spectra	
		Impedance functions	
		Equivalent circuit approximation	
		Wagner-Maxwell model	
		Piezoelectricity, Ferroelectricity, and pyroelectricity	
		Ferroelectric materials and Applications	
	Dec-9	Exam 3: Dielectric Properties (Friday 2:40 - 4:30 PM)	

* Lecture notes