Skip to content

Materials Science and Engineering Georgia Institute of Technology Materials Science and Engineering

Menu
Close
  • ABOUT
    • CHAIR'S WELCOME
    • WHAT IS MSE?
    • ADVISORY BOARD
    • HISTORY
    • CONTACTS & DIRECTIONS
    • OUTREACH ACTIVITIES
    • STRATEGIC PLAN
    • CAREER OPPORTUNITIES
    • AVAILABLE POSITIONS
  • VALUES
    • DIVERSITY AND INCLUSION
    • CREATING RESISTANCE TO SEXUAL HARASSMENT (CRSH)
  • GRADUATE
    • CURRENT STUDENTS
    • PROSPECTIVE STUDENTS
    • FAQ
    • REQUEST INFO
    • APPLY NOW
    • CERTIFICATES
  • PROSPECTIVE STUDENTS
    • GRADUATE
    • UNDERGRADUATE
  • UNDERGRADUATE
    • ACADEMIC ADVISING
    • CURRICULUM
    • MENTORING PROGRAM
    • MSE MINOR AND CERTIFICATES
    • PROSPECTIVE STUDENTS
    • REQUEST INFO
    • RESEARCH
    • SCHOLARSHIPS
    • STUDENT RESOURCES
    • CHANGE MAJOR
  • PEOPLE
    • ALL
    • FTE FACULTY
    • STAFF
    • ACADEMIC PROFESSIONALS
    • RESEARCH SCIENTISTS/POST DOCS
    • ADJUNCT FACULTY
    • COURTESY APPOINTMENTS
    • EMERITUS FACULTY
    • GRAD STUDENTS
    • ADMINISTRATION
    • STAFF - WHO DOES WHAT
  • GIVING
    • STUDENT SUPPORT
    • SUPPORTING THE MILL
    • SUPPORTING RESEARCH AND FACULTY
    • SUPPORTING THE SCHOOL
    • WHY GIVE NOW
    • WAYS TO GIVE
  • MILL
  • RESEARCH
    • MATERIALS AND CHALLENGES
    • RESEARCH CENTERS
    • INDUSTRY RELATIONS
    • TOPICAL WORKING GROUPS
    • FACULTY RESEARCH OVERVIEW
  • INDUSTRY
  • SAFETY
  • Georgia Tech Home
  • Campus Map
  • Directory
  • Offices
  • Facebook
  • YouTube
Search

Search form

  • You are here:
  • Home

Dissertation Proposal Defense – Taylor Sloop

Event Type: 
MSE Grad Presentation
Event Date: 
Monday, July 18, 2022 - 1:00pm
Talk Title: 
The Effects of Controlled Porosity on the Dynamic Compression and Tensile Failure of Additively Manufactured 316L Stainless Steel
Location: 
MRDC 2405 and via Zoom Videoconferencing
Web Link: https://gatech.zoom.us/j/97092919028

Committee Members: 

Prof. Naresh Thadhani, Co-advisor, MSE

Prof. Josh Kacher, Co-advisor, MSE

Saryu Fensin, Ph.D., LANL

Prof. Aaron Stebner, ME/MSE

Prof. David McDowell, ME/MSE

 

The Effects of Controlled Porosity on the Dynamic Compression and Tensile Failure of Additively Manufactured 316L Stainless Steel

Abstract:

Additive manufacturing (AM) techniques are powerful processing tools that provide control over the material microstructure and, as such, the resulting mechanical properties under complex loading conditions.  To take full advantage of the processes and the relationship between heterogeneities within the material, it is imperative to understand the unique microstructure, and the ensuing changes in properties such as strength and failure mechanisms.  The proposed research focuses on understanding the effect of heterogeneities, such as process-inherent and intentionally tailored porosity on the shock compression and eventually dynamic failure of AM fabricated steels investigated using plate impact experiments. 

The research will be conducted using Powder Bed Fusion (PBF) printed 316L SS to generate a better understanding of how the process-inherent porosity can be controlled and utilized to tailor the material properties. The understanding developed will enable us to design additively manufactured parts containing specific porosities to meet desired strength and fracture criteria, allowing for replacement of standard wrought stainless steel or for further performance improvement, e.g., to handle higher or more targeted loads. A high-throughput experimental method involving multiplexed PDV diagnostics to study multiple samples per experiment will be utilized to simultaneously investigate the effects of porosity and other directional heterogeneities on dynamic failure of these materials. The experiments will include multiple PDV probes mounted off of the back surface of disc-shaped samples to measure the free-surface particle profile. Signatures associated with the spall pull-back and recompression rates will be used to determine the spall strength as well as void nucleation and growth characteristics, representative of the spall failure process. Additionally, samples will be soft recovered, and the fracture surfaces will be analyzed using electron microscopy to identify stress and strain accommodation as well as void nucleation and growth processes affected by variations in microstructure.  The combined PDV and microstructure analysis will be correlated to generate the process-structure-property mapping of AM-fabricated steels.

ABOUT

  • About
    • Chair's Welcome
    • Strategic Plan
    • What is MSE?
    • Careers
    • History
    • Contacts & Directions
    • Outreach Activities
    • External Advisory Board
    • Events
      • Past Events
    • News
    • Seminars
      • Brumley D Pritchett Lecture Series
      • Industry Executive Seminars
      • Past Seminars
      • Upcoming Seminars

Student Resources

  • Undergraduate Handbook
  • Undergraduate Registration
  • Overload Requests
  • Graduate Handbook
  • Lab Safety Policy
  • Student Mentoring Program

Faculty & Staff Resources

  • Faculty & Staff Directory
  • Administration
  • Institute for Materials
  • Financial Forms

Quick Links

  • College of Engineering
  • COE Ethics Statement
  • Bursar's Office
  • Registrar's Office
  • International Education
  • Financial Aid
  • Student Affairs
  • Tech Lingo
  • Title IX/Sexual Misconduct
Map of Georgia Tech

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332
Phone: 404-894-2000

  • Emergency Information
  • Legal & Privacy Information
  • Accessibility
  • Accountability
  • Accreditation
  • Employment
  • Login
Georgia Tech

© Georgia Institute of Technology